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Abstract—There are many information and divergence measures 
are exist in the literature of Information Theory and statistics. These 
are very useful and play an important role in many areas like as 
sensor networks,testing the order in a Markov chain, risk for binary 
experiments, region segmentation and estimation etc. In this research 
paper, we shall study bounds on well-known information divergence 
measures in terms of Hellinger discrimination using information 
inequalities, convex functions and new f-divergence measures.  
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1. INTRODUCTION 

Let  

1 2 3 1
1

{ ( , , , .......... ) / 0, 1}, 2
n

n n i
i

p p p p p p p n


     
(1.1) 

be the set of complete finite discrete probability distributions. 
There are many information and divergence measures exist in 
the literature on information theory and statistics. In this 
section we present some properties of new f-divergence 
measure introduced in Jain &Saraswat [3] & [4]and its 
particular cases which are interesting in areas of information 
theory and statistics is given by 
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Where 
:f R R 

 is a convex function and P, Q ϵ n . 

Proposition 1.1 Let : [0, )f R   be convex and 

, nP Q  with 1n nP Q   then we have the following 

inequality  

( , ) (1)fS P Q f
  (1.3) 

Equality holds in (1.3)  

iff
, 1,2,...,i ip q i n  

 (1.4) 

Corollary 1.1.1 (Non-Negativity of New f-divergence 
measure )Let : [0, )f R  be convex and normalized i.e.  

f(1)=0 (1.5) 

Then for any , nP Q  from (1.3) of proposition 1.1 and 

(1.5), we have the inequality  

( , ) 0fS P Q    (1.6) 

If f is strictly convex, equality holds in (1.6)iff 

, 1,2,...,i ip q i n    (1.7)  

and 

( , ) 0 iff fS P Q P Q   (1.8) 

Proposition 1.2 Let 1 2and f f
 are two convex functions and 

1 2g af bf 
then 

1 2
( , ) ( , ) ( , )g f fS P Q aS P Q bS P Q  , 

Where 
, nP Q

. 

It is shown that using new f-divergence measure we have 
derived some well-known divergence measures like as, 
Hellinger discrimination [5], Kullback-Leibler divergence [7] 
& [8], Relative Jensen-Shannon divergence [6], Relative 
arithmetic-geometric divergence measure [9]. We now give 
some examples of well-known information divergence 
measures which are obtained from New f-divergence measure. 

 If ( ) logf t t   then relative Jensen-Shannon 

divergence measure is given by
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 If ( ) logf t t t  then relative arithmetic-geometric 

divergence measure is given by
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 If
1

( ) (2 1) log(2 1),
2

f t t t t    thenKullback-Leibler 

divergence measure is givenby 

1

( , ) log ( , )
n

i
f i

i i

p
S P Q p KL P Q

q

 
  

 
 (1.11) 

 If
1

( ) log(2 1),
2

f t t t     then Kullback-Leibler 

divergence measure is given by  
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2. HELINGER DISCRIMINATION 

Let us considera function 

 21
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Hence function is convex and normalized i.e. f(1)=0, It’s 
second derivative is positive. So function is convex  

 
Fig. 2.1: (Graph of f(t)) 

Consider a function  21
( ) 2 1 1

2
f t t   then Hellinger 

discrimination is given by 
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Then we can say 

( , ) ( , )fS P Q h P Q (2.2) 

3. NEW INFORMATION INEQUALITY 

The following theorem concerning an upper and lower bound 
for a new f-divergence measure in terms of the Hellinger 
discrimination holds. 

Results are similar to presented by Dragomir [1] and Jain and 
Saraswat[2& 4]. 

Theorem 3.1: Let suppose that generating mapping 

1
: ,

2
f R   
 

is normalized that is f(1)=0 and satisfies 

the assumptions. 

(i) f is twice differentiable on (r, R), where 0.5 ≤ r ≤ 1≤ R ≤ ∞ 

(ii) there exist constants m, M such that 

3
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If P, Q are discrete probability distributions satisfying the 

assumptions
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Then we have the Inequality 

( , ) ( , ) ( , )fmh P Q S P Q Mh P Q  (3.3) 

Proof: Define a mapping  
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Then (.)mF  is normalized and twice differentiable and since
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 (3.4) 

For all t (a, b), implied by the first inequality in (3.1). It 
follows that the mapping (.)mF  is convex on (r, R). Applying 

the non-negativity property of New f-divergence functional for

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

t

f(
t)

convex function plot

f(t) = (1/2) (sqrt(2t-1)-1)2



Bounds on Information Divergence Measures in Terms of Hellinger Discrimination 1137 
 

 

Journal of Basic and Applied Engineering Research 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 13; April-June, 2015  

(.)mF  and the linearity,(by proposition 1.2), we may state 

that 
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From where we get the first inequality in (3.3). 

Now we again Define a mapping,  

 2

: (0.5, ) , ( ) ( ) 2 1 1
2M M

M
F R F t f t t     

 

which is obviously normalized, twice differentiable and, by 
(3.1), convex on (r, R). Applying non-negativity property of 

New f-divergence for (.),MF and Proposition 1.2, we obtain 

the second part of (3.3) i.e. 

0 ( , ) ( , )fMh P Q S P Q   (3.6) 

From (3.5) and (3.6) give the result (3.3) 

( , ) ( , ) ( , )fmh P Q S P Q Mh P Q 
 

4. SOME PARTICULAR CASES 

In this section we established bounds of particular well known 
divergence measures in terms of Hellinger discrimination 
using inequality of (3.3) of Theorem 3.1 which may be 
interested in Information Theory and statistics. 

The result is on similar lines to the result presented by 
Dragomir [1] and Jain &Saraswat [2]& [3]. 

Proposition 4.1: Let , nP Q   be two probability 

distributions with the property that 
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 Then we have the following inequality 
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Also ( , ) ( , )fS P Q KL P Q from equation (1.11) 

From equation (1.11), (3.3) & (4.2) give the result (4.1). 

Proposition 4.2: Let , nP Q   be two probability 

distributions satisfying (3.1) 

Then we have the following inequality 
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Also ( , ) ( , )fS P Q KL Q P from equation (1.12)
 

 From equation (1.12), (3.3) & (4.4) give the result (4.3) 

Proposition 4.3: Let , nP Q   be two probability 

distributions satisfying (3.1), 

Then we have the following inequality
1 1
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Proof: Consider the mapping : ( , )f r R R  
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Also ( , ) ( , )fS P Q G Q P from equation (1.10)
 

From equation (1.10), (3.3) & (4.6) give the result (4.5)
 

 

Proposition 4.4: Let , nP Q   be two probability 

distributions satisfying (3.1), 

Then we have the following inequality
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Also 
( , ) ( , )fS P Q F Q P

from equation (1.9) 

From equation (1.9), (3.3)& (4.8) give the result (4.7)
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